ME 7247: Advanced Control Systems

Supplementary notes

Lyapunov equations

v.2.0 (11.3.2022)

In these notes, we derive conditions under which the Lyapunov equation has a unique solution, and we explain the interplay between stability of A and positive definiteness of the solution.

1 The Sylvester equation

The (discrete) Sylvester equation is a matrix equation given by

$$
\begin{equation*}
A^{\top} X B-X+Q=0 \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$ are square matrices, but $X, Q \in \mathbb{R}^{n \times m}$ need not be square. We are interested in the case where A, B, Q are given, and we must find X.

1.1 Existence and uniqueness of solutions

Lemma 1. The Sylvester equation (1) has a unique solution X if and only if $\lambda_{A} \lambda_{B} \neq 1$ for every eigenvalue λ_{A} of A and eigenvalue λ_{B} of B.

Proof. Eq. (1) is a set of $m n$ linear equations in $m n$ unknowns. Therefore, it has a unique solution if and only if the homogeneous equation $A^{\top} X B-X=0$ admits only the trivial solution $X=0$. This is the same as saying that our solution is unique for $F x=g$ if $\operatorname{null}(F)=\{0\}$. In our case, F is square (as many equations as unknowns), so a zero nullspace means range (A) is the whole space, so there is a solution for every g and this solution is unique.

Suppose $\lambda_{A} \lambda_{B}=1$. Let $v \neq 0$ be a left eigenvector of A for λ_{A} and let $w \neq 0$ be a left eigenvector of B for λ_{B}. Now let $X=v w^{*} \neq 0$, and we have $A^{\top} X B=A^{\top} v w^{*} B=\lambda_{A} \lambda_{B} v w^{*}=v w^{*}=$ X. Similarly, $A^{\top} \bar{X} B=\bar{\lambda}_{A} \bar{\lambda}_{B} \bar{X}=\bar{X}$. So both X and \bar{X} satisfy the homogeneous equation. Consequently, so does $\operatorname{Re}(X)=\frac{1}{2}(X+\bar{X})$ and $\operatorname{Im}(X)=\frac{1}{2 i}(X-\bar{X})$. These matrices can't both be zero (otherwise X would itself be zero), so at least one of them is a real nontrivial solution to the homogeneous equation $A^{\top} X B-X=0$.

Conversely, suppose we have a solution $X \neq 0$ to the homogeneous equation $A^{\top} X B=X$. Let $B=P J P^{-1}$ be a Jordan decomposition of B. Rewrite the equation as $A^{\top} \hat{X} J=\hat{X}$ where $\hat{X}=$ $X P \neq 0$. Pick out an eigenvalue λ_{B} of B. Suppose the corresponding Jordan block has size q and write $A^{\top} \hat{X}_{\lambda} J_{\lambda}=\hat{X}_{\lambda}$ with $J_{\lambda} \in \mathbb{C}^{q \times q}$. Since $\hat{X} \neq 0$, suppose λ_{B} was chosen such that $\hat{X}_{\lambda} \neq 0$. Let \hat{x}_{ℓ} be $\ell^{\text {th }}$ column of \hat{X}_{λ}. Writing $A^{\top} \hat{X}_{\lambda} J_{\lambda}=\hat{X}_{\lambda}$ columnwise, we obtain

$$
\lambda_{B} A^{\top} \hat{x}_{1}=\hat{x}_{1}, \quad A^{\top} \hat{x}_{1}+\lambda_{B} A^{\top} \hat{x}_{2}=\hat{x}_{2}, \quad \ldots \quad A^{\top} \hat{x}_{r-1}+\lambda_{B} A^{\top} \hat{x}_{r}=\hat{x}_{r}
$$

The first equation tells us that $\left(I-\lambda_{B} A^{\top}\right) \hat{x}_{1}=0$. If $\hat{x}_{1} \neq 0$, then λ_{B}^{-1} is an eigenvalue of A. Which means we have $\lambda_{A} \lambda_{B}=1$. If this is not the case, then $\hat{x}_{1}=0$. Substituting this into the second equation, we have $\left(I-\lambda_{B} A^{\boldsymbol{\top}}\right) \hat{x}_{2}=0$. Repeating this argument, we conclude that $\lambda_{A} \lambda_{B}=1$, for otherwise we would have $\hat{x}_{\ell}=0$ for all ℓ, which contradicts the fact that $\hat{X}_{\lambda} \neq 0$.

2 The Lyapunov equation

The (discrete) Lyapunov equation is a special case of the Sylvester equation with $B=A$.

$$
\begin{equation*}
A^{\top} X A-X+Q=0, \tag{2}
\end{equation*}
$$

where A and Q are given matrices, and our goal is to solve for X. Here, all matrices are $n \times n$. Our main result describes the connections between Schur-stability of A, definiteness of solution to the Lyapunov equation, and properties of the matrices (A, Q).

Theorem 1. Consider the Lyapunov equation (2).

1. Suppose A is Schur-stable.
(a) There exists a unique solution to the Lyapunov equation, and $X=\sum_{k=0}^{\infty}\left(A^{\top}\right)^{k} Q A^{k}$.
(b) If $Q \succeq 0$, then $X \succeq 0$.
(c) If $Q \succeq 0$, then $X \succ 0$ if and only if (A, Q) is observable.
2. If X is a solution to the Lyapunov equation, then
(a) If $Q \succeq 0$ and $X \succ 0$, then all eigenvalues of A satisfy $|\lambda| \leq 1$.
(b) If $Q \succeq 0$ and $X \succeq 0$ and (A, Q) is detectable, then A is Schur-stable.

Proof. We prove each item separately. Also, we will make use of some technical lemmas regarding observability and detectability, which may be found in Appendix B.

1. Suppose A is Schur-stable. The Lyapunov equation is a Sylvester equation with $B=A$. Since A is Schur-stable, we have $\left|\lambda_{A} \lambda_{B}\right|=\left|\lambda_{A}\right| \cdot\left|\lambda_{B}\right|<1$, so by Lemma 1, the Lyapunov equation has a unique solution. The proposed infinite sum converges. ${ }^{1}$ We can also see by direct substitution that this X satisfies the Lyapunov equation, proving Item (a). Due to the special form of the infinite sum, X will inherit symmetry and definiteness properties from Q. So if $Q \succeq 0$, then $X \succeq 0$ and we have proven Item (b). To prove Item (c), multiply the Lyapunov equation by $v^{*}(\ldots) v$, where (λ, v) is an eigenpair of A, and obtain

$$
\begin{equation*}
\left(|\lambda|^{2}-1\right) v^{*} X v+v^{*} Q v=0 . \tag{3}
\end{equation*}
$$

Since A is Schur-stable, $|\lambda|<1$. If $X \succ 0$, the first term is negative, which means the second term must be positive. Since $Q \succeq 0$, we deduce that $Q v \neq 0$. By Lemma 7, (A, Q) is observable. Suppose instead that $X \nsucc 0$. Since $X \succeq 0$ from Item (a), there must exist some $z \neq 0$ such that $X z=0$. Using the formula from Item (a), we have

$$
0=z^{\top} X z=\sum_{k=0}^{\infty}\left(A^{k} z\right)^{\top} Q\left(A^{k} z\right)=\sum_{k=0}^{\infty}\left\|Q^{1 / 2} A^{k} z\right\|^{2}
$$

Therefore $Q^{1 / 2} A^{k} z=0$ for all k, so $Q A^{k} z=0$ for all k. This implies that z is in the nullspace of the observability matrix (A, Q), so (A, Q) is not observable.

[^0]2. Suppose X is a solution to the Lyapunov equation. Let (λ, v) be an eigenpair of A, and obtain (3) again. If $Q \succeq 0$, the second term is ≥ 0 so the first term must be ≤ 0. If $X \succ 0$, we deduce $\left(|\lambda|^{2}-1\right) \leq 0$, so $|\lambda| \leq 1$ and we have proven Item (a). If $X \succeq 0$ and (A, Q) is detectable, then by Lemma 8 , whenever $|\lambda| \geq 1$, we have $Q v \neq 0$, so $v^{*} Q v>0$. But the first term is ≥ 0, a contradiction since the two terms must sum to zero. So we conclude that there can be no eigenvalues of A satisfying $|\lambda| \geq 1$, so A is Schur-stable and we have proven Item (b).

2.1 Connection to Gramians

The Lyapunov equations for the observability and controllability Gramians are

$$
A^{\top} Q A-Q+C^{\top} C=0 \quad \text { and } \quad A P A^{\top}-P+B B^{\top}=0 .
$$

If A is Schur-stable, we can apply Theorem 1 and Lemma 7 to conclude that:
(i) $Q \succ 0 \Longleftrightarrow\left(A, C^{\top} C\right)$ observable $\Longleftrightarrow(A, C)$ observable.
(ii) $P \succ 0 \Longleftrightarrow\left(A^{\top}, B B^{\top}\right)$ observable $\Longleftrightarrow\left(A^{\top}, B^{\top}\right)$ observable $\Longleftrightarrow(A, B)$ controllable.

2.2 Monotonicity results

In certain instances, it can be useful to replace the Lyapunov equation by a corresponding inequality. Let's investigate when this is possible and what other properties follow.

Lemma 2. The following statements are equivalent.
(i) The matrix A is Schur-stable.
(ii) There exists a matrix $X \succ 0$ such that $A^{\top} X A-X \prec 0$.

Proof. Suppose A is Schur-stable. Let $Q=I$, so (A, Q) is observable. By Theorem 1, Eq. (2) has a unique solution and $X \succ 0$. Moreover, we have $A^{\top} X A-X=-I \prec 0$. Conversely, suppose $X \succ 0$ and $A^{\top} X A-X \prec 0$. Then define $Q:=-\left(A^{\top} X A-X\right) \succ 0$. Now (2) is satisfied and (A, Q) is detectable since Q is invertible. By Theorem 1, we conclude that A is Schur-stable.

Lemma 3. Suppose A is Schur-stable. If X_{i} and Q_{i} satisfy

$$
A^{\top} X_{1} A-X_{1}+Q_{1}=0 \quad \text { and } \quad A^{\top} X_{2} A-X_{2}+Q_{2}=0
$$

then if $Q_{1} \succeq Q_{2}$, we have $X_{1} \succeq X_{2}$.
Proof. Subtracting one equation from the other, obtain $A^{\top}\left(X_{1}-X_{2}\right) A-\left(X_{1}-X_{2}\right)+\left(Q_{1}-Q_{2}\right)=0$. From Theorem 1, if $Q_{1}-Q_{2} \succeq 0$, then $X_{1}-X_{2} \succeq 0$.

Note. The converse of Lemma 3 is not true in general, so $X_{1} \succeq X_{2} \nRightarrow Q_{1} \succeq Q_{2}$. In fact, if we arbitrarily pick some $X \succ 0$ and Schur-stable A, then $A^{\top} X A-X$ may be indefinite.

Lemma 4. Suppose A is Schur-stable. Let X_{0} be the unique solution to the Lyapunov equation $A^{\top} X_{0} A-X_{0}+Q=0$. Then we have:

- If X satisfies $A^{\top} X A-X+Q \prec 0$, then $X_{0} \prec X$. In other words, X_{0} is the minimal solution among all solutions of this Lyapunov inequality.
- If X satisfies $A^{\top} X A-X+Q \succ 0$, then $X_{0} \succ X$. In other words, X_{0} is the maximal solution among all solutions of this Lyapunov inequality.

Proof. Subtracting the Lyapunov equation from the inequality, obtain $A^{\top}\left(X-X_{0}\right) A-\left(X-X_{0}\right) \prec 0$. Multiplying the above by $A^{\top}(\ldots) A$ and iterating, we conclude that

$$
\left(X-X_{0}\right) \succ A^{\top}\left(X-X_{0}\right) A \succ\left(A^{\top}\right)^{2}\left(X-X_{0}\right) A^{2} \succ \cdots \succ\left(A^{\top}\right)^{k}\left(X-X_{0}\right) A^{k} .
$$

Since A is Schur-stable, $A^{k} \rightarrow 0$ as $k \rightarrow \infty$, so we conclude that $X-X_{0} \succ 0$. The second claim of Lemma 4 can be proved in an analogous manner.

Note. If we apply Lemma 4 to a case where $Q \succeq 0$, then $X_{0} \succeq 0$, therefore all solutions to the inequality $A^{\top} X A-X+Q \prec 0$ also satisfy $X \succ X_{0} \succeq 0$ automatically. The same is not true if we reverse the inequality. If we have a solution to $A^{\top} X A-X+Q \succ 0$, then all we can say is that $X_{0} \succ X$ and $X_{0} \succeq 0$, so X need not be positive definite.
Finally, we have the following result that relates detectability to a Lyapunov-like inequality.
Lemma 5. The following are equivalent.
(i) (A, C) is detectable.
(ii) There exists $Y \succ 0$ such that $A^{\top} Y A-Y-C^{\top} C \prec 0$.

This matrix inequality in Lemma 5 is similar to the observability Gramian, but notice that A need not be stable, and there is a negative sign in front of the $C^{\top} C$ term.

Proof. Suppose $Y \succ 0$ satisfies $A^{\top} Y A-Y-C^{\top} C \prec 0$. Suppose (A, C) is not detectable. By Lemma 8, there exists (λ, v) such that $v \neq 0, A v=\lambda v,|\lambda| \geq 1$, and $C v=0$. Multiply the inequality by $v^{*}(\ldots) v$ and obtain $\left(|\lambda|^{2}-1\right) v^{*} Y v<0$. But $Y \succ 0$ and $|\lambda| \geq 1$, a contradiction. So we conclude (A, C) is detectable.

Conversely, suppose (A, C) is detectable. Then there exists a matrix L such that $A+L C$ is Schurstable. By Theorem 1, the Lyapunov equation $(A+L C) X(A+L C)^{\top}-X+\left(I+L L^{\boldsymbol{\top}}\right)=0$ has a solution $X \succ 0$. Therefore, $(A+L C) X(A+L C)^{\top}-X+L L^{\top} \prec 0$. Using properties of Schur complements, this is equivalent to

$$
0 \prec\left[\begin{array}{cc}
X-L L^{\top} & A+L C \\
(A+L C)^{\top} & X^{-1}
\end{array}\right]=\left[\begin{array}{cc}
X & A \\
A^{\top} & X^{-1}+C^{\top} C
\end{array}\right]-\left[\begin{array}{c}
-L \\
C^{\top}
\end{array}\right]\left[\begin{array}{c}
-L \\
C^{\top}
\end{array}\right]^{\top} \preceq\left[\begin{array}{cc}
X & A \\
A^{\top} & X^{-1}+C^{\top} C
\end{array}\right]
$$

Applying Schur complements again, this is equivalent to $X^{-1}+C^{\top} C-A^{\top} X^{-1} A \succ 0$ and $X \succ 0$. Letting $Y=X^{-1}$, and rearranging, we obtain $Y \succ 0$ and $A^{\top} Y A-Y-C^{\top} C \prec 0$, as required.

Note. An analogous result to Lemma 5 holds for stabilizability. Namely, (A, B) is stabilizable if and only if there exists $X \succ 0$ such that $A X A^{\top}-X-B B^{\top} \prec 0$.

A Convergence of an infinite matrix sum

Lemma 6. Suppose A is Schur-stable. The following infinite sum converges.

$$
\sum_{k=0}^{\infty} A^{k} Q\left(A^{\top}\right)^{k}
$$

Proof. We divide the proof into several steps.
Step 1. First, we show that if A is Schur-stable, then $\lim _{k \rightarrow \infty} A^{k}=0$. To see why this is so, write A is Jordan normal form: $A=P J P^{-1}$, and use the fact that $A^{k}=P J^{k} P^{-1}$. We will prove that $J^{k} \rightarrow 0$, which implies that $A^{k} \rightarrow 0$. The matrix J is block diagonal and made up of the Jordan blocks J_{λ} corresponding to the eigenvalues of A. Each Jordan block looks like

$$
J_{\lambda}=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \ddots & \vdots \\
0 & 0 & \lambda & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right]=\lambda I+S,
$$

where S is the shift matrix (1's on the super-diagonal and zeros everywhere else). Since λI and S commute, we can apply the binomial theorem to expand powers of J_{λ}. Powers of S correspond to additional shifts, so if $S \in \mathbb{R}^{m \times m}$, we have $S^{m}=0$. So when $k \geq m-1$, we have

$$
(\lambda I+S)^{k}=\sum_{\ell=0}^{k}\binom{k}{\ell} S^{\ell} \lambda^{k-\ell}=\sum_{\ell=0}^{m-1}\binom{k}{\ell} S^{\ell} \lambda^{k-\ell}=\left[\begin{array}{ccccc}
\lambda^{k} & k \lambda^{k-1} & \binom{k}{2} \lambda^{k-2} & \cdots & \binom{k}{m-1} \lambda^{k-m+1} \\
0 & \lambda^{k} & k \lambda^{k-1} & \ddots & \vdots \\
0 & 0 & \lambda^{k} & \ddots & \binom{k}{2} \lambda^{k-2} \\
\vdots & \vdots & \ddots & \ddots & k \lambda^{k-1} \\
0 & 0 & \cdots & 0 & \lambda^{k}
\end{array}\right]
$$

As $k \rightarrow \infty$, the exponential terms involving powers of λ dominate, since the binomial coefficients are polynomials in degree at most $m-1$. Since A is Schur-stable, $|\lambda|<1$, so we have $J_{\lambda}^{k} \rightarrow 0$, and therefore $J^{k} \rightarrow 0$ and $A^{k} \rightarrow 0$.

Step 2. Next, we show that when k is sufficiently large, $\left\|A^{k}\right\|$ is bounded by a decaying exponential in k. We already know from Step 1 that $\lim _{k \rightarrow \infty}=0$, so $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$. Note that the limit being zero does not mean that $\left\|A^{k}\right\|$ decays monotonically to zero. It may increase at first, and it may oscillate as it decays.

Let $\rho(A)$ be the spectral radius of A (largest eigenvalue magnitude). Schur-stability of A implies that $\rho(A)<1$. Pick $\varepsilon \in(0,1-\rho(A))$. Then,

$$
\rho\left(\frac{1}{1-\varepsilon} A\right)=\frac{\rho(A)}{1-\varepsilon}<1 .
$$

Therefore, $\frac{1}{1-\varepsilon} A$ is Schur-stable, and $\lim _{k \rightarrow \infty}\left(\frac{1}{1-\varepsilon} A\right)^{k}=0$. By the definition of the limit, there exists k_{0} such that for all $k \geq k_{0}$, we have $\left\|\left(\frac{1}{1-\varepsilon} A\right)^{k}\right\|<1$, which rearranges to $\left\|A^{k}\right\|<(1-\varepsilon)^{k}$.

Step 3. To show that our infinite sum is convergent, it suffices to show that it is absolutely convergent. In other words, we will prove that the series

$$
\sum_{\ell=0}^{\infty}\left\|A^{\ell} Q\left(A^{\mathrm{\top}}\right)^{\ell}\right\|
$$

is convergent. Define k_{0} as in Step 2 , pick $k \geq k_{0}$, and apply the triangle inequality and submultiplicativity of the matrix norm to obtain

$$
\begin{aligned}
\sum_{\ell=0}^{k}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\| & =\sum_{\ell=0}^{k_{0}-1}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\|+\sum_{\ell=k_{0}}^{k}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\| \\
& \leq \sum_{\ell=0}^{k_{0}-1}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\|+\sum_{\ell=k_{0}}^{k}\left\|\left(A^{\top}\right)^{\ell}\right\|\|Q\|\left\|A^{\ell}\right\| \\
& \leq \sum_{\ell=0}^{k_{0}-1}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\|+\sum_{\ell=0}^{k}(1-\varepsilon)^{2 \ell}\|Q\| \\
& \leq \sum_{\ell=0}^{k_{0}-1}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\|+\sum_{\ell=0}^{\infty}(1-\varepsilon)^{2 \ell}\|Q\| \\
& \leq \sum_{\ell=0}^{k_{0}-1}\left\|A^{\ell} Q\left(A^{\top}\right)^{\ell}\right\|+\frac{\|Q\|}{1-(1-\varepsilon)^{2}}
\end{aligned}
$$

The right-hand side is independent of k, which shows that the left-hand side is uniformly bounded for all k. Since the left-hand side is an increasing function of k, it must converge as $k \rightarrow \infty$. This shows that our original series is absolutely convergent, and hence convergent.

B Observability and detectability

These are some technical lemmas we used in the proofs for Theorem 1.

Lemma 7 (observability). Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$ be given matrices. The following statements are equivalent.
(i) The pair (A, C) is observable.
(ii) The pair $\left(A, C^{\top} C\right)$ is observable.
(iii) The eigenvalues of $A+L C$ may be freely assigned by suitable choice of L.
(iv) The observability matrix $\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]$ has full column rank.
(v) For all $\lambda \in \mathbb{C}$, the matrix $\left[\begin{array}{c}C \\ A-\lambda I\end{array}\right]$ has full column rank.
(vi) If $\lambda \in \mathbb{C}$ and $0 \neq v \in \mathbb{C}^{n}$ satisfy $A v=\lambda v$, then $C v \neq 0$.

Lemma 8 (detectability). Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$ be given matrices. The following statements are equivalent.
(i) The pair (A, C) is detectable.
(ii) The pair $\left(A, C^{\boldsymbol{\top}} C\right)$ is detectable.
(iii) There exists a matrix L such that $A+L C$ is Schur-stable.
(iv) For all $\lambda \in \mathbb{C}$ with $|\lambda| \geq 1$, the matrix $\left[\begin{array}{c}C \\ A-\lambda I\end{array}\right]$ has full column rank.
(v) If $\lambda \in \mathbb{C}$ and $0 \neq v \in \mathbb{C}^{n}$ satisfy $|\lambda| \geq 1$ and $A v=\lambda v$, then $C v \neq 0$.

Items (v) and (vi) of Lemma 7 and Items (iv) and (v) of Lemma 8 are commonly known as the Popov-Belevitch-Hautus (PBH) test. We omit the proofs of Lemmas 7 and 8 as they are standard results and can be found in any linear systems textbook.

[^0]: ${ }^{1}$ See Lemma 6 in Appendix A for a proof of this fact.

