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In these notes, we derive conditions under which the Lyapunov equation has a unique solution, and
we explain the interplay between stability of A and positive definiteness of the solution.

1 The Sylvester equation

The (discrete) Sylvester equation is a matrix equation given by

ATXB −X +Q = 0, (1)

where A ∈ Rn×n and B ∈ Rm×m are square matrices, but X,Q ∈ Rn×m need not be square. We
are interested in the case where A,B,Q are given, and we must find X.

1.1 Existence and uniqueness of solutions

Lemma 1. The Sylvester equation (1) has a unique solution X if and only if λAλB ̸= 1 for
every eigenvalue λA of A and eigenvalue λB of B.

Proof. Eq. (1) is a set of mn linear equations in mn unknowns. Therefore, it has a unique solution
if and only if the homogeneous equation ATXB − X = 0 admits only the trivial solution X = 0.
This is the same as saying that our solution is unique for Fx = g if null(F ) = {0}. In our case, F
is square (as many equations as unknowns), so a zero nullspace means range(A) is the whole space,
so there is a solution for every g and this solution is unique.

Suppose λAλB = 1. Let v ̸= 0 be a left eigenvector of A for λA and let w ̸= 0 be a left eigenvector
of B for λB. Now let X = vw∗ ̸= 0, and we have ATXB = ATvw∗B = λAλBvw

∗ = vw∗ =
X. Similarly, ATX̄B = λ̄Aλ̄BX̄ = X̄. So both X and X̄ satisfy the homogeneous equation.
Consequently, so does Re(X) = 1

2(X + X̄) and Im(X) = 1
2i(X − X̄). These matrices can’t both be

zero (otherwise X would itself be zero), so at least one of them is a real nontrivial solution to the
homogeneous equation ATXB −X = 0.

Conversely, suppose we have a solution X ̸= 0 to the homogeneous equation ATXB = X. Let
B = PJP−1 be a Jordan decomposition of B. Rewrite the equation as ATX̂J = X̂ where X̂ =
XP ̸= 0. Pick out an eigenvalue λB of B. Suppose the corresponding Jordan block has size q and
write ATX̂λJλ = X̂λ with Jλ ∈ Cq×q. Since X̂ ̸= 0, suppose λB was chosen such that X̂λ ̸= 0. Let
x̂ℓ be ℓth column of X̂λ. Writing ATX̂λJλ = X̂λ columnwise, we obtain

λBA
Tx̂1 = x̂1, ATx̂1 + λBA

Tx̂2 = x̂2, . . . ATx̂r−1 + λBA
Tx̂r = x̂r.

The first equation tells us that (I−λBA
T)x̂1 = 0. If x̂1 ̸= 0, then λ−1

B is an eigenvalue of A. Which
means we have λAλB = 1. If this is not the case, then x̂1 = 0. Substituting this into the second
equation, we have (I − λBA

T)x̂2 = 0. Repeating this argument, we conclude that λAλB = 1, for
otherwise we would have x̂ℓ = 0 for all ℓ, which contradicts the fact that X̂λ ̸= 0. ■
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2 The Lyapunov equation

The (discrete) Lyapunov equation is a special case of the Sylvester equation with B = A.

ATXA−X +Q = 0, (2)

where A and Q are given matrices, and our goal is to solve for X. Here, all matrices are n×n. Our
main result describes the connections between Schur-stability of A, definiteness of solution to the
Lyapunov equation, and properties of the matrices (A,Q).

Theorem 1. Consider the Lyapunov equation (2).

1. Suppose A is Schur-stable.

(a) There exists a unique solution to the Lyapunov equation, and X =
∑∞

k=0(A
T)kQAk.

(b) If Q ⪰ 0, then X ⪰ 0.

(c) If Q ⪰ 0, then X ≻ 0 if and only if (A,Q) is observable.

2. If X is a solution to the Lyapunov equation, then

(a) If Q ⪰ 0 and X ≻ 0, then all eigenvalues of A satisfy |λ| ≤ 1.

(b) If Q ⪰ 0 and X ⪰ 0 and (A,Q) is detectable, then A is Schur-stable.

Proof. We prove each item separately. Also, we will make use of some technical lemmas regarding
observability and detectability, which may be found in Appendix B.

1. Suppose A is Schur-stable. The Lyapunov equation is a Sylvester equation with B = A.
Since A is Schur-stable, we have |λAλB| = |λA| · |λB| < 1, so by Lemma 1, the Lyapunov
equation has a unique solution. The proposed infinite sum converges.1 We can also see by
direct substitution that this X satisfies the Lyapunov equation, proving Item (a). Due to the
special form of the infinite sum, X will inherit symmetry and definiteness properties from
Q. So if Q ⪰ 0, then X ⪰ 0 and we have proven Item (b). To prove Item (c), multiply the
Lyapunov equation by v∗(. . . )v, where (λ, v) is an eigenpair of A, and obtain

(|λ|2 − 1)v∗Xv + v∗Qv = 0. (3)

Since A is Schur-stable, |λ| < 1. If X ≻ 0, the first term is negative, which means the
second term must be positive. Since Q ⪰ 0, we deduce that Qv ̸= 0. By Lemma 7, (A,Q) is
observable. Suppose instead that X ⊁ 0. Since X ⪰ 0 from Item (a), there must exist some
z ̸= 0 such that Xz = 0. Using the formula from Item (a), we have

0 = zTXz =
∞∑
k=0

(Akz)TQ(Akz) =
∞∑
k=0

∥∥∥Q1/2Akz
∥∥∥2 .

Therefore Q1/2Akz = 0 for all k, so QAkz = 0 for all k. This implies that z is in the nullspace
of the observability matrix (A,Q), so (A,Q) is not observable.

1See Lemma 6 in Appendix A for a proof of this fact.
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2. Suppose X is a solution to the Lyapunov equation. Let (λ, v) be an eigenpair of A, and obtain
(3) again. If Q ⪰ 0, the second term is ≥ 0 so the first term must be ≤ 0. If X ≻ 0, we deduce
(|λ|2 − 1) ≤ 0, so |λ| ≤ 1 and we have proven Item (a). If X ⪰ 0 and (A,Q) is detectable,
then by Lemma 8, whenever |λ| ≥ 1, we have Qv ̸= 0, so v∗Qv > 0. But the first term is ≥ 0,
a contradiction since the two terms must sum to zero. So we conclude that there can be no
eigenvalues of A satisfying |λ| ≥ 1, so A is Schur-stable and we have proven Item (b). ■

2.1 Connection to Gramians

The Lyapunov equations for the observability and controllability Gramians are

ATQA−Q+ CTC = 0 and APAT − P +BBT = 0.

If A is Schur-stable, we can apply Theorem 1 and Lemma 7 to conclude that:

(i) Q ≻ 0 ⇐⇒ (A,CTC) observable ⇐⇒ (A,C) observable.

(ii) P ≻ 0 ⇐⇒ (AT, BBT) observable ⇐⇒ (AT, BT) observable ⇐⇒ (A,B) controllable.

2.2 Monotonicity results

In certain instances, it can be useful to replace the Lyapunov equation by a corresponding inequality.
Let’s investigate when this is possible and what other properties follow.

Lemma 2. The following statements are equivalent.

(i) The matrix A is Schur-stable.

(ii) There exists a matrix X ≻ 0 such that ATXA−X ≺ 0.

Proof. Suppose A is Schur-stable. Let Q = I, so (A,Q) is observable. By Theorem 1, Eq. (2) has a
unique solution and X ≻ 0. Moreover, we have ATXA−X = −I ≺ 0. Conversely, suppose X ≻ 0
and ATXA − X ≺ 0. Then define Q := −(ATXA − X) ≻ 0. Now (2) is satisfied and (A,Q) is
detectable since Q is invertible. By Theorem 1, we conclude that A is Schur-stable. ■

Lemma 3. Suppose A is Schur-stable. If Xi and Qi satisfy

ATX1A−X1 +Q1 = 0 and ATX2A−X2 +Q2 = 0,

then if Q1 ⪰ Q2, we have X1 ⪰ X2.

Proof. Subtracting one equation from the other, obtain AT(X1−X2)A−(X1−X2)+(Q1−Q2) = 0.
From Theorem 1, if Q1 −Q2 ⪰ 0, then X1 −X2 ⪰ 0. ■

Note. The converse of Lemma 3 is not true in general, so X1 ⪰ X2 ≠⇒ Q1 ⪰ Q2. In fact, if we
arbitrarily pick some X ≻ 0 and Schur-stable A, then ATXA−X may be indefinite.
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Lemma 4. Suppose A is Schur-stable. Let X0 be the unique solution to the Lyapunov equation
ATX0A−X0 +Q = 0. Then we have:

• If X satisfies ATXA − X + Q ≺ 0, then X0 ≺ X. In other words, X0 is the minimal
solution among all solutions of this Lyapunov inequality.

• If X satisfies ATXA − X + Q ≻ 0, then X0 ≻ X. In other words, X0 is the maximal
solution among all solutions of this Lyapunov inequality.

Proof. Subtracting the Lyapunov equation from the inequality, obtain AT(X−X0)A−(X−X0) ≺ 0.
Multiplying the above by AT(. . . )A and iterating, we conclude that

(X −X0) ≻ AT(X −X0)A ≻ (AT)2(X −X0)A
2 ≻ · · · ≻ (AT)k(X −X0)A

k.

Since A is Schur-stable, Ak → 0 as k → ∞, so we conclude that X −X0 ≻ 0. The second claim of
Lemma 4 can be proved in an analogous manner. ■

Note. If we apply Lemma 4 to a case where Q ⪰ 0, then X0 ⪰ 0, therefore all solutions to the
inequality ATXA−X +Q ≺ 0 also satisfy X ≻ X0 ⪰ 0 automatically. The same is not true if we
reverse the inequality. If we have a solution to ATXA − X + Q ≻ 0, then all we can say is that
X0 ≻ X and X0 ⪰ 0, so X need not be positive definite.

Finally, we have the following result that relates detectability to a Lyapunov-like inequality.

Lemma 5. The following are equivalent.

(i) (A,C) is detectable.

(ii) There exists Y ≻ 0 such that ATY A− Y − CTC ≺ 0.

This matrix inequality in Lemma 5 is similar to the observability Gramian, but notice that A need
not be stable, and there is a negative sign in front of the CTC term.

Proof. Suppose Y ≻ 0 satisfies ATY A − Y − CTC ≺ 0. Suppose (A,C) is not detectable. By
Lemma 8, there exists (λ, v) such that v ̸= 0, Av = λv, |λ| ≥ 1, and Cv = 0. Multiply the
inequality by v∗(. . . )v and obtain (|λ|2 − 1)v∗Y v < 0. But Y ≻ 0 and |λ| ≥ 1, a contradiction. So
we conclude (A,C) is detectable.

Conversely, suppose (A,C) is detectable. Then there exists a matrix L such that A+LC is Schur-
stable. By Theorem 1, the Lyapunov equation (A + LC)X(A + LC)T − X + (I + LLT) = 0 has
a solution X ≻ 0. Therefore, (A + LC)X(A + LC)T − X + LLT ≺ 0. Using properties of Schur
complements, this is equivalent to

0 ≺
[
X − LLT A+ LC
(A+ LC)T X−1

]
=

[
X A
AT X−1 + CTC

]
−
[
−L
CT

] [
−L
CT

]T

⪯
[
X A
AT X−1 + CTC

]
Applying Schur complements again, this is equivalent to X−1 + CTC − ATX−1A ≻ 0 and X ≻ 0.
Letting Y = X−1, and rearranging, we obtain Y ≻ 0 and ATY A− Y − CTC ≺ 0, as required. ■

Note. An analogous result to Lemma 5 holds for stabilizability. Namely, (A,B) is stabilizable if
and only if there exists X ≻ 0 such that AXAT −X −BBT ≺ 0.
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A Convergence of an infinite matrix sum

Lemma 6. Suppose A is Schur-stable. The following infinite sum converges.

∞∑
k=0

AkQ(AT)k

Proof. We divide the proof into several steps.

Step 1. First, we show that if A is Schur-stable, then limk→∞Ak = 0. To see why this is so, write
A is Jordan normal form: A = PJP−1, and use the fact that Ak = PJkP−1. We will prove that
Jk → 0, which implies that Ak → 0. The matrix J is block diagonal and made up of the Jordan
blocks Jλ corresponding to the eigenvalues of A. Each Jordan block looks like

Jλ =



λ 1 0 · · · 0

0 λ 1
. . .

...

0 0 λ
. . . 0

...
...

. . . . . . 1
0 0 · · · 0 λ


= λI + S,

where S is the shift matrix (1’s on the super-diagonal and zeros everywhere else). Since λI and S
commute, we can apply the binomial theorem to expand powers of Jλ. Powers of S correspond to
additional shifts, so if S ∈ Rm×m, we have Sm = 0. So when k ≥ m− 1, we have

(λI + S)k =
k∑

ℓ=0

(
k

ℓ

)
Sℓλk−ℓ =

m−1∑
ℓ=0

(
k

ℓ

)
Sℓλk−ℓ =


λk kλk−1

(
k
2

)
λk−2 · · ·

(
k

m−1

)
λk−m+1

0 λk kλk−1 . . .
...

0 0 λk . . .
(
k
2

)
λk−2

...
...

. . . . . . kλk−1

0 0 · · · 0 λk


As k → ∞, the exponential terms involving powers of λ dominate, since the binomial coefficients
are polynomials in degree at most m− 1. Since A is Schur-stable, |λ| < 1, so we have Jk

λ → 0, and
therefore Jk → 0 and Ak → 0.

Step 2. Next, we show that when k is sufficiently large,
∥∥Ak

∥∥ is bounded by a decaying exponential
in k. We already know from Step 1 that limk→∞ = 0, so limk→∞

∥∥Ak
∥∥ = 0. Note that the limit

being zero does not mean that
∥∥Ak

∥∥ decays monotonically to zero. It may increase at first, and it
may oscillate as it decays.

Let ρ(A) be the spectral radius of A (largest eigenvalue magnitude). Schur-stability of A implies
that ρ(A) < 1. Pick ε ∈

(
0, 1− ρ(A)

)
. Then,

ρ

(
1

1− ε
A

)
=

ρ(A)

1− ε
< 1.

Therefore, 1
1−εA is Schur-stable, and limk→∞

(
1

1−εA
)k

= 0. By the definition of the limit, there

exists k0 such that for all k ≥ k0, we have
∥∥∥( 1

1−εA
)k∥∥∥ < 1, which rearranges to

∥∥Ak
∥∥ < (1− ε)k.
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Step 3. To show that our infinite sum is convergent, it suffices to show that it is absolutely
convergent. In other words, we will prove that the series

∞∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥

is convergent. Define k0 as in Step 2, pick k ≥ k0, and apply the triangle inequality and submulti-
plicativity of the matrix norm to obtain

k∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥ =

k0−1∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥+

k∑
ℓ=k0

∥∥∥AℓQ(AT)ℓ
∥∥∥

≤
k0−1∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥+

k∑
ℓ=k0

∥∥∥(AT)ℓ
∥∥∥ ∥Q∥

∥∥∥Aℓ
∥∥∥

≤
k0−1∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥+

k∑
ℓ=0

(1− ε)2ℓ ∥Q∥

≤
k0−1∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥+

∞∑
ℓ=0

(1− ε)2ℓ ∥Q∥

≤
k0−1∑
ℓ=0

∥∥∥AℓQ(AT)ℓ
∥∥∥+

∥Q∥
1− (1− ε)2

The right-hand side is independent of k, which shows that the left-hand side is uniformly bounded
for all k. Since the left-hand side is an increasing function of k, it must converge as k → ∞. This
shows that our original series is absolutely convergent, and hence convergent. ■
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B Observability and detectability

These are some technical lemmas we used in the proofs for Theorem 1.

Lemma 7 (observability). Let A ∈ Rn×n and C ∈ Rm×n be given matrices. The following
statements are equivalent.

(i) The pair (A,C) is observable.

(ii) The pair (A,CTC) is observable.

(iii) The eigenvalues of A+ LC may be freely assigned by suitable choice of L.

(iv) The observability matrix


C
CA
...

CAn−1

 has full column rank.

(v) For all λ ∈ C, the matrix
[

C
A− λI

]
has full column rank.

(vi) If λ ∈ C and 0 ̸= v ∈ Cn satisfy Av = λv, then Cv ̸= 0.

Lemma 8 (detectability). Let A ∈ Rn×n and C ∈ Rm×n be given matrices. The following
statements are equivalent.

(i) The pair (A,C) is detectable.

(ii) The pair (A,CTC) is detectable.

(iii) There exists a matrix L such that A+ LC is Schur-stable.

(iv) For all λ ∈ C with |λ| ≥ 1, the matrix
[

C
A− λI

]
has full column rank.

(v) If λ ∈ C and 0 ̸= v ∈ Cn satisfy |λ| ≥ 1 and Av = λv, then Cv ̸= 0.

Items (v) and (vi) of Lemma 7 and Items (iv) and (v) of Lemma 8 are commonly known as the
Popov–Belevitch–Hautus (PBH) test. We omit the proofs of Lemmas 7 and 8 as they are standard
results and can be found in any linear systems textbook.
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